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In the optics of charged particle beams, circular transverse modes can be introduced; they
provide an adequate basis for rotation-invariant transformations. A group of these transformations
is shown to be identical to a group of the canonical angular momentum preserving mappings. These
mappings and the circular modes are parameterized similar to the Courant-Snyder forms for the
conventional uncoupled case. The uncoupled-to-circular and reverse transformers (beam adapters)
are introduced in terms of the circular and uncoupled modes; their implementation on the basis of
skew quadrupole blocks is described. Various kinds of matching for beams, adapters and solenoids
are considered. Applications of the uncoupled-to-circular, circular-to-uncoupled and circular-to-
circular transformers are discussed. A range of applications includes round beams at the interaction
region of circular colliders, flat beams for linear colliders, relativistic electron cooling and ionization
cooling.

PACS Codes: 29.27.-a, 29.27.Eg

I. INTRODUCTION

Linear beam optics normally employs transformations, which either do not couple vertical and horizontal degrees
of freedom, or the coupling is weak. In the canonical 4D phase space,

x ≡
(
X
Y

)
≡

 x
px
y
py

 , (1)

these uncoupled transformations P are described by 4D block-diagonal matrices with independent 2D unimodular
blocks for the vertical and horizontal sub-spaces. For them, particle trajectories are conventionally described by means
of linear, or uncoupled, modes; taken in the Courant-Snyder form [1], the related four basis vectors can be arranged
as columns of a block-diagonal matrix:

V =



√
βx cos(φx)

√
βx sin(φx) 0 0

−αx cos(φx) − sin(φx)√
βx

−αx sin(φx) + cos(φx)√
βx

0 0

0 0
√
βy cos(φy)

√
βy sin(φy)

0 0
−αy cos(φy)− sin(φy)√

βy

−αy sin(φy) + cos(φy)√
βy

 . (2)

The uncoupled transformations preserve a structure of the linear-polarized basis (2): the resulting 4 images Ṽ = PV
have the same structure as the original vectors, with new values for the Courant-Snyder parameters αx,y, βx,y and
the phases φx,y.

Note that the basis vectors (2) are normalized in such a way, which makes the matrix V symplectic:

VTSV = S (3)

where

S =
(

J 0
0 J

)
; J =

(
0 1
−1 0

)
; S2 = −I (4)
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is the symplectic unit matrix, I is the 4 × 4 identity matrix and the superscript T stands for the transposing. A
convenience to choose basis vectors in the symplectic form relates to mapping symplecticity: without friction, any
(coupled or uncoupled) transformation T from the initial to the final state is symplectic: taken in a canonical basis,
it satisfies the symplecticity condition (3) (see, e. g. [2], p. 52):

T TST = S. (5)

The symplectic matrices form a group; so when a symplectic mapping T acts on a symplectic basis W, the new basis
W̃ = TW is also symplectic. The inverted statement is true as well: any transformation which maps one symplectic
basis W onto another W̃ is symplectic itself.

Any initial phase space vector x can be expanded over the basis (2)

x = V · a (6)

with its amplitudes a = (a1, a2, a3, a4)T . Due to the basis symplecticity, the amplitudes a can be considered as new
canonical variables. Uncoupled mappings change basis parameters αx,y, βx,y, and φx,y, while leaving the amplitudes
a constant. The actions and initial phases Jx,y , χx,y in the 4D phase space x can be presented in terms of the
amplitudes a as

a = (
√

2Jx sinχx ,
√

2Jx cosχx ,
√

2Jy sinχy ,
√

2Jy cosχy) (7)

where the actions are given by the Courant-Snyder invariants

Jx = (a2
1 + a2

2)/2 = γxx
2/2 + αxxpx + βxp

2
x/2

Jy = (a2
3 + a2

4)/2 = γyy
2/2 + αyypy + βyp

2
y/2

(8)

with γx,y = (1 + α2
x,y)/βx,y.

The structure of the linear-polarized basis (2) is preserved only by the uncoupled transformations; for general 4D
symplectic transformations the proper basis structure is more complicated; various forms were presented in Refs.
[3–5]. The uncoupled transformations are not, however, the only point of interest where the symplectic basis can be
presented in a specific reduced form.

Starting from an analogy, there are two conventional descriptions of the light polarization: it can be described in
terms of either linear or circular modes. The linear basis is good when the medium is characterized by two fixed
orthogonal optical axes in a plane normal to the beam propagation. The circular basis is adequate when the medium
is invariant under rotations about the axis of the light propagation.

For charged particle beams, focusing by means of solenoids or round electrostatic lenses and bending by index
n = 1/2 dipoles gives a continuous, or local-invariant optics, i. e. such that mapping between any two places is
(rotation-) invariant. However, mapping between two specific places can be designed as rotation-invariant even on
a base of such non-invariant elements as quadrupoles and constant-field dipoles [6]; the whole mapping in this case
can be referred to as block-invariant. Optical schemes with actual local or block invariance are discussed for muon
transport [7], circular colliders (see list of references in e. g. [9]) and relativistic electron cooling [6]. An important
property of rotation-invariant mappings is that they preserve the canonical angular momentum (CAM); this and
inverse statements are proven in the next section. For invariant transformations, the adequate basis is constructed
from circular modes; this is as obvious for charged particle beams, as it is for light. A symplectic circular basis,
analogous to the Courant-Snyder uncoupled form, is presented in Section III.

After both linear and circular polarized modes are introduced, a problem of their mutual transformation can be
considered. When both bases are symplectic, they can be mapped onto each other; thus, this transformation can
always be done. Such an idea was originally proposed by one of the authors (Ya. Derbenev) to reduce the beam-beam
effects in circular colliders; he found that an uncoupled beam state can be transformed into a round whirled state and
back. He then called these linear-circular transformers ”beam adapters” [10]. If one of the emittances of the coming
uncoupled beam can be neglected, then the outgoing beam would be of definite-sign spirality, CAM dominated state
[6], and its transverse motion could be completely cancelled inside a matched solenoid. This effective elimination
of transverse temperature of coming flat beam can be essential for relativistic electron cooling [11,12]. A particular
realization of the adapting optics has been found in Ref. [13]. One more application of the adapter was proposed in
Ref. [14]: to get a flat electron beam for a linear collider from a round beam emitted by a magnetized cathode. In Ref.
[15], a general requirement on the magnetized-to-flat mapping was discussed; the properties of the involved quadrupole
blocks were formulated in terms of the Courant-Snyder parameters; the emittance preservation for both the canonical
emittances was shown. Recently, the magnetized-to-flat beam transformation was demonstrated experimentally at
Fermilab [16]. In the paper below, the beam adapters are considered as linear-circular transformers, which gives a
straightforward way to present all their features. Finally, various applications of the circular modes and beam adapters
are discussed.
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II. ROTATION-INVARIANT TRANSFORMATIONS

Group of rotations in the transverse plane through angles θ can be presented by matrices

R(θ) =
(

cI sI
−sI cI

)
(9)

with c = cos θ , s = sin θ and I as the 2× 2 identity matrix. Rotation invariance of a transformation T means that it
commutes with the rotations:

R · T − T · R = 0 . (10)

This condition is equivalent to its particular case of an infinitesimal rotation by an angle dθ when

R = I + G · dθ ; G =
(

0 I
−I 0

)
; G2 = −I (11)

where I and I are 4 × 4 and 2 × 2 identity matrices correspondingly. Then, the invariance condition reduces to a
commutation of the mapping T with the infinitesimal operator G

G · T − T · G = 0 . (12)

It can be shown now that symplectic invariant transformations T preserve the canonical angular momentum (CAM)

M ≡ xpy − ypx ≡
1
2
xT · L · x (13)

where

L =
(

0 J
−J 0

)
; J =

(
0 1
−1 0

)
; L2 = I . (14)

Note that the CAM matrix L is rotation-invariant:

G · L − L · G = 0 . (15)

In terms of its matrix L, CAM preservation at the mapping T can be expressed as

T TLT = L. (16)

To prove that this is true when conditions (5, 12) are provided, it is convenient to use the relation between the
infinitesimal operator G, the symplectic unit matrix S, and the CAM matrix L:

S · L = L · S = −G . (17)

which is straightforward to prove. It means that the matrices S, L and G form an algebra: any their product returns
one of them. From (15, 17) the symplecticity matrix can be presented as

S = −L · G . (18)

Being substituted in the symplecticity condition (5), after the commutation (12), it leads to the CAM preservation
(16). Thus, the invariant transformations preserve the CAM.

In fact, the more general statement called ”Generalized Busch’s Theorem” was proven in Ref. [6]. Namely, it
was shown that if a symplectic transformation preserves the rotation symmetry of any specific laminar beam, but,
generally speaking, does not preserve the symmetry of other beams, an absolute value of the CAM of any particle of
this specific beam is preserved.

One more generalization follows from the described algebra of the matrices S,G and L. Namely, if a symplectic
mapping is invariant under a continuous one-parametric group of transformations with an infinitesimal operator G
(not necessarily rotations), it preserves a quadratic form associated with a matrix L = S · (G − GT )/2.

Having shown that the mapping invariance leads to the CAM preservation, a reverse statement can be proven as
well: if a symplectic mapping preserves the CAM of any initial state, it is rotationally invariant. Indeed, with the
matrix T T expressed from the symplecticity condition (5) and substituted in the CAM preservation (16), it leads to
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what can be seen as the invariance property (12) when Eq. (17) is used. Thus, mapping invariance gives rise to CAM
preservation and vice versa, so these properties are absolutely equivalent.

A general form of the CAM-preserving matrices was found by E. Pozdeev [17] and E. Perevedentsev [18]; in the rest
of this section we are following E. Perevedentsev. The invariance condition (12) applied to the mapping presented in
a block 2× 2 form

T =
(

Txx Txy

Tyx Tyy

)
(19)

immediately yields Txx = Tyy and Txy = −Tyx or

T =
(

A B
−B A

)
. (20)

The symplecticity condition (5) applied to a matrix of such a form (20) results in

AT · J · A + BT · J · B = J (21)

AT · J · B− BT · J · A = 0 (22)

For arbitrary matrix A, it is true that AT · J · A = |A|J; thus, Eq. (21) gives

|A|+ |B| = 1 . (23)

The condition (22) presented as

J · B · A−1 = (B · A−1)T · J

yields

B = A · const . (24)

It follows from (23, 24) that the matrices A and B can be presented as

A = T · cos θ , B = T · sin θ (25)

where T is an arbitrary 2× 2 matrix with |T| = 1 and θ is an arbitrary parameter. Thus, it leads to a conclusion that
4× 4 matrices of a form

T =
(

T · cos θ T · sin θ
−T · sin θ T · cos θ

)
≡ R(θ)

(
T 0
0 T

)
(26)

present a group of symplectic rotation-invariant mappings identical to the CAM-preserving group of transformations.
One more interesting transformation is mirror reflection:

M =
(

I 0
0 −I

)
. (27)

This symplectic transformation does not commute with rotations, so it is not rotation-invariant and cannot be imple-
mented by rotation-invariant optics. Combined with the rotation invariant group, it leads to such mappings as

T− = TM =R(θ)
(

T 0
0 −T

)
(28)

which invert a sign of the CAM, preserving the CAM absolute value and beam rotation symmetry. In Ref. [6] a
generalized Busch’s theorem was proven: if a rotation-invariant laminar beam is linearly transformed into a rotation-
invariant beam again, then the absolute value of the CAM is preserved for any particle of this beam. Transformations
T (26) and T− (28) together form a group of CAM-value preserving mappings. Thus, according to this theorem, they
cover all the linear symplectic transformations, which preserve beam rotation symmetry for any initial round beam
state. Reflection-like transformations T− can be implemented by means of two adapters, discussed in sections IV and
V.
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Parameterization of the 2×2 unimodular matrix T can be taken in the conventional Courant-Snyder form, in terms
of its input α1, β1 and output α2, β2 parameters and a phase advance µ : (see e. g. [2]):

T =


√
β2

β1
(cosµ + α1 sinµ)

√
β1β2 sinµ

−1 + α1α2√
β1β2

sinµ+
α1 − α2√
β1β2

cosµ

√
β1

β2
(cosµ − α2 sinµ)

 , (29)

where the subscript 1 of the Courant-Snyder parameters relates to an initial state, and 2 to a final state.

III. CIRCULAR BASIS

The uncoupled transformations preserve the structure of the linear-polarized basis (2), changing only its (Courant-
Snyder) parameters. In this sense, the linear-polarized modes (2) form an eigen-basis of the uncoupled transformations.
An expansion of a particle trajectory x(s) over this variable basis has constant coefficients, leading to the Courant-
Snyder invariants.

In this section, the eigen-basis of the rotation-invariant transformations is constructed. First, some heuristic ideas
are used for the construction of the matrix, comprised of four basis vectors. Then, free parameters of this form are
taken to make this form symplectic. Finally, it is shown how the remaining free parameters are changed under the
rotation-invariant transformations (26).

Rotation-invariant transformations preserve the CAM. The simplest vector with a non-zero CAM can be given as

u0 = (b, 0, 0, pt)T (30)

with an arbitrary offset b and the tangential momentum pt. This vector gives rise to a pair of rotation-equivalent
orthogonal vectors by turning through angles φ+ and φ+ − π/2 resulting in

u1 = (b cosφ+,−pt sinφ+, b sinφ+, pt cosφ+)T

u2 = (b sinφ+, pt cosφ+,−b cosφ+, pt sinφ+)T (31)

where φ+ is an arbitrary parameter. Then, the CAM of the original vector u0 can be negated by changing the sign
b→ −b and an additional pair of orthogonal vectors can be constructed from the vector

ũ0 = (−b, 0, 0, pt)T (32)

by rotations through an arbitrary angle −φ− and −φ− + π/2:

u3 = (−b cosφ−, pt sinφ−, b sinφ−, pt cos φ−)T

u4 = (−b sinφ−,−pt cos φ−,−b cosφ−, pt sinφ−)T (33)

A structure of the four vectors (31, 33) is preserved by rotations R, but it is not general enough to be preserved by
the rotation-invariant transformations (26). A reason is that these vectors contain only the tangential momentum
pt having zero its normal (radial) component pn = (xpx + ypy)/

√
x2 + y2, which is not general enough. After the

addition of the normal momentum pn, the matrix of the vectors U = (u1,u2,u3,u4) changes as follows:

U =


b cosφ+ b sinφ+ −b cos φ− −b sinφ−

−pt sinφ+ + pn cos φ+ pt cosφ+ + pn sinφ+ pt sinφ− − pn cosφ− −pt cosφ− + pn sinφ−
b sinφ+ −b cos φ+ b sinφ− −b cosφ−

pt cosφ+ + pn sinφ+ pt sinφ+ − pn cosφ+ pt cosφ− + pn sinφ− pt sinφ− − pn cos φ−

 . (34)

To be a valid basis for the rotation-invariant transformations, it is necessary for the set U to be symplectic. It is
straightforward to see that the symplecticity condition (3) is satisfied for the matrix U if the tangential momentum
pt is in a specific relation with the offset: pt = 1/(2b). This enables the CAM to have certain values for the basis
vectors: M = 1/2 for the first pair u1 and u2, and M = −1/2 for the second pair u3 and u4.

After the symplecticity of the set of vectors (34) is fixed, the final remaining point is to find out how it is changed
under the invariant transformations (26). Instead of the offset b and the normal momentum pn, new parameters β
and α are more convenient to use:
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b =
√
β/2 ; pn = −α/

√
2β . (35)

The matrix U then becomes the following function of its parameters α, β, φ+, φ−:

U ≡U(α, β, φ+, φ−) =
1√
2



√
β cosφ+

√
β sinφ+ −

√
β cos φ− −

√
β sinφ−

− sin φ+ − α cos φ+√
β

cosφ+ − α sinφ+√
β

sinφ− + α cos φ−√
β

− cos φ− + α sinφ−√
β√

β sinφ+ −
√
β cosφ+

√
β sinφ− −

√
β cos φ−

cos φ+ − α sinφ+√
β

sinφ+ + α cos φ+√
β

cos φ− − α sinφ−√
β

sinφ− + α cosφ−√
β


.

(36)

The same notations β, α as for the linear-polarized basis (2) are used here on purpose. The fact is that under
the rotation-invariant transformations (26) the circular set (36) is transformed similarly to how the linear basis is
transformed under the uncoupled mappings.

The invariant transformation T (26) parameterized by block T (29) can be applied to the set of circular vectors U
(36). Without any loss of generality, the input Courant-Snyder parameters of the mapping can be matched with the
vectors: α1 = α, β1 = β. After that, the output vector is found as

Ũ ≡ T ·U(α, β, φ+, φ−) = U(α2, β2, φ+ + µ− θ, φ− + µ+ θ) . (37)

This result completes the basis construction for the rotation-invariant mappings. It shows that the structure of the
symplectic set of vectors U (36) is preserved under these transformations; thus, this set forms the eigen-basis of the
rotation-invariant mappings. After this mapping, the vectors expand (change their β parameter), acquire some normal
momentum (change their α parameter), and turn (change their phases φ+ and φ−). Note that vectors of the same
spirality (sign of the CAM) are turned by the same angles. Circular modes for beam optics were considered in Ref.
[10] for the description of round beams in the IP region of circular colliders. In a slightly different form than (36),
the circular modes were derived in Ref. [5] as a particular case of the general 4D symplectic eigen-vectors presented
in that paper.

Having defined the circular Courant-Snyder parameters according to Eq. (37), any phase space vector x can be
expanded over this rotating basis:

x = U · a . (38)

In this presentation, the parameters of the circular basis are changed after the transformation, while the 4D vector of
amplitudes a = (a1, a2, a3, a4)T remains constant. Similar to the uncoupled basis (2), relative values of the same-pair
amplitudes (same-spirality for the circular basis) relate to the phases of the excited modes, while the sums of the
same-pair amplitude squared give the corresponding actions. These actions, or Courant-Snyder invariants of the
circular modes, can be expressed in terms of the particle coordinates (x, px, y, py). Canonically conjugated actions
J± and phases χ± for positive and negative spirality modes are given by the same canonical transformation as for the
uncoupled modes (7):

a = (
√

2J+ sinχ+ ,
√

2J+ cosχ+ ,
√

2J− sinχ− ,
√

2J− cosχ−) (39)

Taking the amplitudes from their definition (38), the actions can be expressed in terms of 2D vectors of the offset and
transverse momentum ~r = (x, y) , ~p = (px, py):

J± = γ~r2/4 + α~r~p/2 + β~p2/4±M/2 (40)

where γ ≡ (1 + α2)/β and M = xpy − ypx is the CAM. Note a similarity of this expression to the corresponding
formula in the uncoupled case (8).

Preservation of the circular actions J± under the invariant mappings means that both their sum and difference are
preserved as well:

J+ − J− = M = const ; J+ + J− = γ~r2/2 + α~r~p+ β~p2/2 = const . (41)

Inverse expressions are found as
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~r2 = β
(
J+ + J− + 2

√
J+J− cosψ

)
~p2 = β−1

(
(J+ + J−)(1 + α2) + 2

√
J+J−(−1 + α2) cosψ + 4

√
J+J−α sinψ

)
~r~p = −α(J+ + J−)− 2

√
J+J−α cosψ − 2

√
J+J− sinψ

(42)

where ψ = φ+ + χ+ + φ− + χ−. When only one of the two circular modes is excited (either J+ or J− is zero), then

~r2 = βJ , ~p2 = γJ , ~r~p = −αJ , M = ±J . (43)

Due to the basis symplecticity, the amplitudes a can be considered as new canonical coordinates, where a1 is conju-
gated with a2 and a3 with a4. One more useful canonical transformation is given by the circular basis U(α, β, φ+, φ−)
taken for some fixed values of the phases φ+, φ−, say, φ+ = 0 , φ− = 0. Let

U0(α, β) ≡U(α, β, 0, 0) (44)

be such a fixed-phase basis; then new canonical coordinates ã ≡ (ã1, ã2, ã3, ã4) can be introduced by a symplectic
transformation U0 as

x = U0 · ã . (45)

These new coordinates

ã = U−1
0 · x = U(α, β, 0, 0)−1 ·U(α, β, φ+, φ−) · ã

are nothing else but the constant amplitudes, a, rotated by the phases φ+,−φ−:(
ã1

ã2

)
=
(

cos φ+ sinφ+

− sinφ+ cos φ+

)(
a1

a2

)
=
√

2J+

(
sin(φ+ + χ+)
cos(φ+ + χ+)

)
,(

ã3

ã4

)
=
(

cosφ− sinφ−
− sinφ− cos φ−

)(
a3

a4

)
=
√

2J−

(
sin(φ− + χ−)
cos(φ− + χ−)

)
.

(46)

IV. ADAPTERS

Both uncoupled V (2) and circular U (36) basic sets are symplectic; therefore, they can be mapped on each other.
Symplectic transformations

C = U ·V−1 and C̃ = V ·U−1 (47)

map the uncoupled basis V on the circular basis U, and back, respectively. Note that the uncoupled-to-circular
transformation C maps the horizontal and vertical phase spaces on the modes of opposite spiralities. The initial
state of a particle x expanded over the uncoupled basis as x = V · a is characterized by a vector of the amplitudes
a = (a1, a2, a3, a4)T . Then, the uncoupled-to-circular transformation C converts the initial state x into a new one

x̃ = C · x = U ·V−1 ·V · a = U · a .

with the same amplitudes of expansion over the circular basis; the same statement is true for the opposite transfor-
mation C̃. As a consequence, the corresponding uncoupled and circular Courant-Snyder invariants are equal:

Jx = J+ ; Jy = J− . (48)

Note that every invariant assumes here its own Courant-Snyder parameters: Jx,y are calculated with αx,y , βx,y of the
uncoupled basis V (2), while J± assumes α , β of the circular basis U (36).

Principal ideas of the uncoupled-to-circular C or reverse C̃ mappings were originally proposed in Ref. [10] for round
beam schemes in circular colliders and, later, for electron cooling [11]. Optical devices realizing such transformations
were named by the author as beam adapters, which underlines their shaping role for the beam phase portrait. Adaptive
transformations are illustrated schematically by Fig. 1.
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Y
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X

VERTICAL MODE

=>

=>

Y

X

COUNTER-CLOCKWISE MODE

CLOCKWISE MODE

FIG. 1. Schematic illustration of the uncoupled-to-circular beam adapter: horizontally and vertically polarized modes are
transformed into circular modes of opposite spiralities. Blue and red dots represent particles with smaller or larger actions.
Arrows on the circular mode portraits show particle momenta, proportional to the offsets. For simplicity, all the phase
portraits are depicted as circles; generally, tilted ellipses are mapped onto each other. Direction of external arrows => specify
the direction of transformation. Reverse direction of both upper and lower arrows (<=) would correspond to the reverse,
circular-to-uncoupled adapter.

For circular colliders, round beams in the interaction region can significantly increase the beam-beam limit of the
luminosity [8,9,19]. It can be shown that a proper adapter transforms an incoming uncoupled beam into a rotation-
invariant outgoing beam, and the rotation invariance would be guaranteed not only at the interaction point, but in the
whole space around it, bounded by the nearest up- and downstream quadrupoles. Indeed, homogeneous distributions
over the horizontal and vertical phases for the incoming uncoupled beam turn into a homogeneous distribution over the
circular phases in the outgoing beam if the uncoupled-to-circular mapping C = U·V−1 (47) is matched with the beam,
i. e. the Courant-Snyder parameters αx,y , βx,y of the mapping are equal to those of the beam. Thus, any matched
adapter transforms uncoupled phase-homogeneous beams into rotation-invariant beams. After the interaction region,
the round beam can be turned back to a new uncoupled state by means of the reverse transformation. Note that
the matched uncoupled-to circular adapter C makes outgoing beams round for any ratio of the vertical to horizontal
emittances and any machine tunes, contrary to the schemes like those proposed in Ref. [8] and implemented at CESR
[19]. Note also that the revolution matrix at the interaction point makes only a transverse turn of the circular basis;
this matrix is obviously rotation-invariant.

Adapters can also be effectively used for purposes of the relativistic electron cooling, transforming a naturally flat
and hot electron beam in a cooling storage ring into a cold elliptical or round beam inside the matched cooling solenoid
[11]; the resulting dramatical reduction of the electron temperature in the cooling section can be crucial for the cooling
process. Indeed, when Jy = 0, only a positive circular mode is excited after mapping C, making the canonical angular
momentum (CAM) a function of the beam offset: M = r2/β, according to Eq. (43). Immersing this beam inside the
solenoid with the field

B = 2c/(eβ) (49)

turns the transverse motion to zero ; in this matched solenoid, electrons travel strictly along the magnetic field, having
zero Larmor radii.

A pair of matched adapters can provide a reflection-like mapping T−, Eq. (28). Indeed, if the first adapter
transforms initial circular modes into uncoupled modes, say, + ⇒ x, − ⇒ y, the second can make these uncoupled
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modes circular again, but with switched spiralities, x⇒ −, y ⇒ +; thus, eventually the circular modes are transformed
as +⇒ −, − ⇒ +, which means that the sign of the CAM is negated.

V. IMPLEMENTATION OF ADAPTERS

Being symplectic, the adaptive transformations C, C̃ are doable. Being linear, they can be realized of quadrupoles.
To provide coupling, some quadrupoles must be skew. The question is, ”How can it be done?” Principle ideas were
proposed in Refs. [10,11] and then in more detail in [13]. It was found that particular adaptive transformations can
be provided by a skew quadrupole triplet.

The transformation C = U · V−1 is constructed from given circular and uncoupled bases. Let the circular basis
U be taken for a waist point, where α = 0, with the phases φ+ = −φ− = −π/4, while the uncoupled basis is taken
with αx = αy = α0, βx = βy = β0 and φx = φy = φ0. It is straightforward to show that in this particular case, the
adaptive transformation C reduces to an uncoupled transformation in a frame rotated by π/4. This can be expressed
as

C = R(π/4)〈M,N〉R(−π/4) (50)

where 〈M,N〉 stands for a block-diagonal 4× 4 matrix with M and N as its 2× 2 diagonal blocks:

M =


√

β

β0
(cos φ0 − α0 sinφ0) −

√
ββ0 sinφ0

α0 cosφ0 + sinφ0√
ββ0

√
β0

β
cosφ0

 (51)

and

N =


−

√
β

β0
(α0 cos φ0 + sinφ0) −

√
ββ0 cosφ0

cosφ0 − α0 sinφ0√
ββ0

−
√
β0

β
sinφ0

 . (52)

For this transformation, the phases φx , φy of the initial uncoupled phase space vector and those φ+ , φ− of the final
circular vector are related as φ+ = φx − φ0 − π/4 , φ− = −φy + φ0 + π/4. Note that the blocks M and N look almost
like the standard Courant-Snyder form, Eq. (29). Obviously, these 2× 2 matrices are characterized by identical sets
of the Courant-Snyder parameters: in terms of Eq. (29), α1 = α0, α2 = 0 and β1 = β0, β2 = β for both of them,
with the phase advances shifted by π/2, namely µM = −φ0, µN = −π/2 − φ0 for M and N blocks respectively. This
relation can also be formulated as

N = F ·M F =
(

0 −β
1/β 0

)
. (53)

In other words, this particular adapter can be realized as a sequence of skew quadrupoles, with the condition (53)
between the horizontal and vertical matrices in the natural (unrotated) frame of the quadrupoles. This condition
on the unimodular 2 × 2 matrices is equivalent to 2 · 2 − 1 = 3 independent conditions on their elements; thus, a
skew triplet of quadrupoles with variable gradients can do the job. If the circular β parameter is not fixed, only 2
conditions remain, so 2 variable quadrupoles are sufficient.

It becomes clearer now how adapting transformation C for the arbitrary given uncoupled αx,y , βx,y and circular
α , β Courant-Snyder parameters can be realized. First of all, the initial uncoupled basis can be mapped onto another
uncoupled basis with identical Courant-Snyder parameters, αx = αy , βx = βy , which could be done by means of 2
quadrupoles with variable field gradients. Then, the described specific adapter can be applied to this second basis,
mapping it onto an unspecified circular basis, which would require 2 more quadrupoles. Finally, a transformation
of this unspecified circular basis onto the given circular basis can be provided by 2 quadrupoles upstream from the
specific adapter. Thus, 2+2+2=6 quadrupoles with variable strength can provide the mapping of a given uncoupled
beam state onto a given circular state.

For some purposes, it could be useful to have a laminar vortex state not round. This goal can be reached by
applying the uncoupled-to-circular adapter (50) to an initially flat beam which Courant-Snyder parameters differ
from the uncoupled parameters of the adapter. In this case, the outgoing beam would have a cross-section as a tilted
ellipse, which tilt and aspect ratio would depend on the beam and adapter parameters.
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VI. CIRCULAR EIGENMODES FOR A SOLENOID

The circular modes described in section III present an adequate basis for any rotation-invariant transformations.
The choice of the initial Courant-Snyder parameters can be made taking into account the properties of the incoming
beam or some ideas related to the convenience or physical sense of the description. In some cases, this choice can
be made by the optics itself. In this section, specific circular modes for a solenoid are discussed. Inside an extended
solenoid, the modes can be defined in such a way that, while the beam travels along the field, their Courant-Snyder
parameters remain constant, and only the phases run. Being rotation-invariant, solenoidal transformation Ts from
the entrance to an arbitrary coordinate z inside the solenoid can be presented as Eq. (26):

Ts = R(−θs/2) · 〈Ts,Ts〉 (54)

with

Ts =
(

cos(θs/2) βs sin(θs/2)
−β−1

s sin(θs/2) cos(θs/2)

)
. (55)

Here θs = eBz/(p0c) ≡ z/ρ is the cyclotron phase advance inside the field B for a particle with the longitudinal
momentum p0. The parameter

βs = 2c/(eB) (56)

can be referred to as the Larmor β-function. From here, it follows that the Courant-Snyder parameters of the circular
basis with β = βs and α = 0 are preserved inside the solenoid: the first pair of the basis vectors turns by an angle
∆φ+ = θs/2 + θs/2 = θs and the second pair by ∆φ− = −θs/2 + θs/2 = 0, i. e. remains unturned.

It is straightforward to see that the canonical variables ã (45) associated with these circular modes describe the
kinetic momenta

ky = py + x/βs kx = px − y/βs (57)

and coordinates of the Larmor center

dx = x/2− βspy/2 dy = y/2 + βspx/2 ; (58)

namely, (
ã1

ã2

)
=

√
βs
2

(
ky
kx

)
,

(
ã3

ã4

)
= −

√
2
βs

(
dx
dy

)
. (59)

These special canonical coordinates in the solenoidal field were proposed in Ref. [20]; they are considered in Ref. [6]
in more details as cyclotron and drift canonical variables.

Let the uncoupled-to-circular adaptive transformation C be matched with an adjacent downstream solenoid, i. e.
α = 0, β = βs. In this case, the horizontal degree of freedom of the incoming uncoupled beam transforms into the
cyclotron mode inside the solenoid, while the vertical one transforms into the drift mode. Due to symplecticity, the
corresponding emittances are equal:

ε2
x ≡ 〈x2〉〈p2

x〉 − 〈xpx〉2 = ε2
c ≡ 〈ã2

1〉〈ã2
2〉 − 〈ã1ã2〉2 = (4/β2)

(
〈k2
x〉〈k2

y〉 − 〈kxky〉2
)

ε2
y ≡ 〈y2〉〈p2

y〉 − 〈ypy〉2 = ε2
d ≡ 〈ã2

3〉〈ã2
4〉 − 〈ã3ã4〉2 = (β2/4)

(
〈d2
x〉〈d2

y〉 − 〈dxdy〉2
) (60)

with the brackets 〈...〉 standing for an ensemble averaging. For a particular case of the round beam inside the solenoid,
when 〈d2

x〉 = 〈d2
y〉 ≡ d2 , 〈dxdy〉 = 0 and similar momentum relations, it yields

εx = βk2/2 , εy = 2d2/β . (61)

Note that the solenoid with an opposite field switches mapping: the horizontal degree of freedom is mapped onto the
drift mode and the vertical plane is mapped onto the cyclotron mode.

Similar relations take place for the reverse, circular-to-uncoupled transformations C̃.
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VII. LOCAL ROTATION INVARIANCE

In a case when the rotation invariance is local (continuous), the circular Courant-Snyder parameters and phases
satisfy certain differential equations, similar to the uncoupled case. The derivatives of the β-function and phases
can be found similar to that in Ref. [5]. For any circular basis vector, the slope x′(s) = dx(s)/ds can be expressed
by means of the kinetic momentum: x′ = kx/p0 = (px − y/βs)/p0, with a consequent substitution of the canonic
momentum px and the coordinate y in terms of the Courant-Snyder parameters of this basis vector. On the other
hand, the slope can be found by a direct derivation of the offset x(s) expressed through the β-function and phase.
Equating these two expressions for the same value leads to the following relations for the circular modes:

dβ

ds
= −2α

p0
,

dφ±
ds

=
1
p0

(
1
β
± 1
βs

)
. (62)

A size of an axisymmetric laminar beam rm(s) satisfies the envelope equation (see e. g. [34], Eq. (4.79)):

r′′m +
γ′0r
′
m

β2
0γ0

+
γ′′0 rm
2β2

0γ0
+

rm
β2
sp

2
0

− M2
m

p2
0

1
r3
m

− K

rm
= 0 . (63)

Here β0 and γ0 are the relativistic factors, p0 = mcβ0γ0 is the total (longitudinal) momentum, Mm is the CAM of

the boundary particle with the offset rm and K =
2Ie

mc3β3
0γ

3
0

is the so-called generalized perveance, which takes into

account the space charge. The term ∝ γ′0 gives the adiabatic damping during acceleration, and the term ∝ γ′′0 relates
to the electrostatic focusing. The envelope equation gives a simplest way to obtain the second-order equation for the
circular β-function. Indeed, the laminar beam is a beam where only one of the two circular modes is excited; thus,
according to Eq. (43), rm =

√
β|Mm|, which leads to an equation for the circular β-function:

β′′ − β′2

2β
+

(γ′0β)′

β2
0γ0

+
2β
p2

0

(
1
β2
s

− 1
β2

)
− 2K
|Mm|

= 0 . (64)

VIII. DIAGONALIZATION OF BEAM MATRIX

Beam distributions are conventionally described by means of the so-called Σ-matrix, or the matrix of second
moments, Σ ≡ 〈x⊗ x〉 , with the sign ⊗ standing for the outer product and x is the 4D phase-space vector (1); in
other words, Σi,j = 〈xixj〉 (see e. g. Ref. [2], p. 56 ). If M is an arbitrary 4× 4 transfer matrix, then the resulting
new Σ-matrix is determined by MΣMT . Unimodular transformations preserve a determinant of the Σ-matrix. This
relates to all the symplectic transformations, but not only: a transfer from the kinetic to the canonical momenta is not
symplectic, but its determinant is also a unit; thus, the Σ-matrix determinant is the same in the kinetic and canonical
bases. The square root of this determinant is the beam emittance in the 4D phase space. The uncoupled state is
described by the block-diagonal Σ-matrix in the original Cartesian coordinates (1); its 4D emittance is a product of
the 2D emittances. Normally the phase distributions are homogeneous, in this case the Σ-matrix is diagonal in the
matched uncoupled basis (the transfer matrix in this case M = V−1):

Σ = Diag(εx, εx, εy, εy), (65)

where Diag(...) is a diagonal matrix with elements listed as the arguments. Suppose this uncoupled beam is trans-
formed into a round beam by the uncoupled-circular adapter. In the matched circular basis, this new vortex state
has the same diagonal beam matrix (65). However, this vortex state represents an arbitrary round beam; thus, it can
be concluded that the Σ-matrix of any round beam distribution is diagonalized in a proper circular basis. Assuming
that the matrix of a round beam is given in the original Cartesian coordinates x, its two pairs of circular eigen-vectors
and two canonical emittances can be found; this is a problem treated in this section.

First of all, the Σ-matrix of a round beam can be expressed in rotation-invariant terms. Substitution of

x = r cos θ , y = r sin θ ,
px = pn cos θ − pt sin θ
py = pn sinθ + pt cos θ
p2
x + p2

y = p2
n + p2

t ≡ p2

(66)

11



and averaging over the angle θ leads to the following 2× 2 block form of the 4× 4 Σ-matrix:

Σ =
1
2

(
Σ 〈rpt〉J

−〈rpt〉J Σ

)
; Σ =

(
〈r2〉 〈rpn〉
〈rpn〉 〈p2〉

)
. (67)

Here, the 2×2 matrix J is determined in Eq. (14); the normal and tangential canonical momenta pn, pt are independent
of the angle θ due to the beam symmetry.

It is straightforward to check that this beam matrix is diagonalized by the circular basis (36) with

β =
〈r2〉√

〈r2〉〈p2〉 − 〈rpn〉2
, α = − 〈rpn〉√

〈r2〉〈p2〉 − 〈rpn〉2
(68)

and arbitrary phases φ+, φ−. In this basis, the beam matrix (67) is presented as

Σ = Diag(ε1, ε1, ε2, ε2) (69)

with the emittances

2ε1,2 = ±〈rpt〉+
√
〈r2〉〈p2〉 − 〈rpn〉2 ≥ 0 . (70)

Note that these partial emittances are preserved by any symplectic transformation: when the beam matrix for a new
state is diagonalized, it will have the same form as (69) with the same eigenvalues ε1,2 as the initial state.

The total 4D emittance is a product of these partial emittances:

4ε ≡ 4ε1ε2 = 〈r2〉〈p2
n〉 + 〈r2〉〈p2

t 〉 − 〈rpn〉2 − 〈rpt〉2 . (71)

All these results can be expressed in terms of the kinetic momenta kx,y, related to canonic ones by Eqs. (57). In
terms of the normal and tangential components, this can be presented as

pn = kn , pt = kt − r/βs , (72)

which leads to

2ε1,2 = ±(〈rkt〉 − 〈r2〉/βs) +
√
〈r2〉〈k2〉 − 〈rkn〉2 − 2〈r2〉〈rkt〉/βs + 〈r2〉2/β2

s . (73)

and

4ε = 〈r2〉〈k2
n〉+ 〈r2〉〈k2

t 〉 − 〈rkn〉2 − 〈rkt〉2 ; (74)

the last result was previously found in Ref. [21]. Note that presentations of the 4D emittance in terms of the canonical
and kinetic momenta are absolutely identical: a transfer from one to another is equivalent to rotation imposed on the
beam as a whole, which does not change the total emittance (71).

The basis which makes the beam matrix diagonal can be considered as eigen-vectors of the given beam distribution,
while the partial emittances can be looked as eigen-values. The deduced circular eigen-vectors for a round beam give a
solution to a problem of its transformation into an uncoupled beam, when the Σ-matrix of the round beam is known.
Indeed, a circular-to-uncoupled adapter with the circular parameters (68) would make this job.

As an example, a beam born at the magnetized cathode can be considered. At the round cathode, 〈r2〉 ≡ 2σ2
c ,

〈k2〉 ≡ 2mTc, 〈rkn〉 = 〈rkt〉 = 0, where σc is its r.m.s. size and Tc is the temperature; for a homogeneous circle of
radius ac, the r.m.s. size σc = ac/2. The circular Courant-Snyder parameters for the eigen-vectors (68) come out as

α = 0 , 1/β2 = 1/β2
s + k2

T /σ
2
c , (75)

and the emittances [5]

ε1,2 = σ2
c/βs

(√
1 + β2

sk
2
T /σ

2
c ∓ 1

)
, ε ≡ ε1ε2 = σ2

cmTc . (76)

If the beam is strongly magnetized, βs � σckT , then

ε1 = βsk
2
T/2 ; ε2 = 2σ2

c/βs . (77)

A problem of eigen-vectors for arbitrary (non-round, coupled) beam distribution has been recently solved by V. A.
Lebedev and S. A. Bogacz [5]. It has been found that the beam matrix can be diagonalized, and the two emittances
ε1,2 are given by the positive roots of a characteristic equation for ε:

det(Σ−1 − (i/ε)S) = 0 ,

where i =
√
−1.
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IX. POSSIBLE APPLICATIONS

In this section, a possible use of the circular mode formalism and beam adapters is discussed.

A. Round beams for circular colliders

For circular colliders, it should be beneficial to have round beams in the interaction point (IP); a list of references
can be found in Ref. [9]. The main reason is that the rotation symmetry of a kick from the round opposite beam
accompanied by the revolution matrix invariance leads to angular momentum preservation. This makes the transverse
motion equivalent to one-dimensional. Resulting elimination of the betatron resonances is of crucial importance since
they are believed to cause the beam lifetime degradation. Optical realization of the round colliding beams has been
proposed in Ref. [8], and a similar scheme has been implemented at CESR [19]. For all these cases, the identity of
the horizontal and vertical emittances and tunes is required. Another approach to get the beams round, the Möbius
accelerator [22], based on beam rotator optics [23], is studied experimentally at CESR [24]. This scheme also leads to
emittance identity and effective tune degeneration: the resulting normal tunes are inevitably separated by 1/2. Use of
the matched adapter at the IP opens a way that is free from all these limitations. The matched uncoupled-to-circular
and reverse adapters make the beams round only in the space between these adapters. This ”beam rounder” does
not change the uncoupled beta-functions and emittances in the outer part of the storage ring, which would allow to
use it as a transparent insert at existing circular colliders. Generally speaking, inserting this device would change
the tunes, which can be restored by another local insert (phase trombone). The adapter is absolutely indifferent
to such global parameters as tunes. Two tunes of the storage ring with the local beam rounder are independent
variables, both available for the working point optimization. The colliding beams are round for any emittance ratio,
and the revolution matrix for any point between the two adapters is rotation-invariant. All this guarantees the
angular momentum preservation at the beam-beam collisions. Note that the beams would be round not only in the
IP itself, but at the whole interval including IP and bounded by the nearest upstream and downstream quadrupoles.
A solenoidal magnetic field in the interaction region is not important for the CAM preservation; thus, the adapter
can be used either with or without the solenoid inside.

B. Flat electron beams for linear colliders

The magnetized-to-flat transformation was suggested to be used for preparation of flat electron beams for linear
colliders [14], as an alternative to flat beams obtained in damping rings. This method also allows to form electron
beams with optimum density distribution in the beam plane to obtain maximum luminosity of a collider. The
magnetized-to-flat transformation maps the cathode shape onto, say, a horizontal phase space of the outgoing flat
beam. Changing the cathode shape, the surface density distribution of the flat beam can be arbitrarily modified, so
any distribution function can be prepared. This optimization would be different for an e-e+ collider and e-e- collider,
since the positron beam is shaped in a damping ring.

C. Relativistic electron cooling

Several beam optics advancements can play a critical role in the development of the relativistic electron cooling
projects for hadron beams [6,12,25].

At Fermilab, a project is developed for electron cooling of antiprotons in the Recycler storage ring at 8.9 GeV/c [26].
To provide beam focusing, the cooling section has to be immersed in the solenoidal field. To avoid beam excitation
in the cooling section, the cathode, where the beam is born, has to be properly magnetized, providing the same
magnetic flux through the beam as in the cooling section. It is important that all the rest of the transport line be free
of extended solenoids [6]. At DESY, a possibility is studied for an RF linac-based electron cooling of 20 GeV protons
in PETRA [27]. For both of these projects, the electron beam is CAM-dominated; similar optical problems have to
be solved, the same methods can be used.

For high-energy electron cooling, with the energy per nucleon ≥ 100 GeV, the electron beam can be circulating in
a storage ring. The effects of intra-beam scattering for this beam are minimized, if it is flat for the most part of the
ring, as it is naturally for an uncoupled lattice. A calm and round beam in the magnetized cooling section can be
provided by means of the adapting optics. Schemes of such a kind were proposed for Tevatron [29] and RHIC [28] at
full energy.
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Recent success in the realization of the energy recovery principle in superconducting electron linacs [30] opens a
very promising perspective of linac-based high energy electron cooling. Currently, there are two proposals of this type
under development: cooling of heavy ion and proton beams in RHIC [31], and ion cooling in an electron-ion collider
[32]; both are based on principles of electron beam transport with a discontinuous solenoid [6]. In view of a high
value of electron (average) current required for efficient electron cooling, the incorporation of an electron recirculator
ring with the electron linac seems to be an important advancement for future electron cooling devices [33]. Today,
this possibility is realized conceptually as a ring with circular modes matched with a solenoid of the cooling section
[12,25,35]. In order to extend the lifetime of a high quality beam against intrabeam scattering and (or) quantum
radiation, the ring lattice can be complemented by adapters to keep the beam flat in arcs ( similar to the above
mentioned electron storage ring case, although the wigglers are not needed here).

There is an interesting possibility to compensate the optical coupling, introduced by the cooling solenoid to the
hadron beam. It can be done by changing the sign of the electron CAM in the middle of the cooling section, where the
solenoid is disrupted for a special short part of the trajectory, as discussed in section IV. Assuming this CAM flip is
provided, the beam enters the second solenoid, where the magnetic field is reversed, so the beam remains calm there
as well as it is calm at the first solenoid. This CAM-flip transformation can be provided by two adapters: the first
one transforms the CAM-dominated beam into a flat beam, and the second transforms this flat beam into a whirled
beam again with an opposite sign of the CAM. As a result of this trick, an average value of the magnetic field in the
cooling section is eliminated, which can be beneficial for the cooled particles. This CAM-flip requires 5 quadrupoles:
adjacent quadrupoles of two skew triplets can be merged.

The transport of the magnetized electron beam from the electron sources to the cooling section at high energies
would also make efficient the electron cooling of high energy positron beams [25]. Due to small positron mass and
magnetization, this process is very intense [36,37]; employing sweeping and rate-redistribution dispersive techniques
[12,38] could additionally intensify it. The circulating positron beam can be cooled down by a linear electron beam
to the emittance of a much lower value than that of the electron beam, obtained from a magnetized source. Finally,
the cooled positron beams can be used, in their turn, for a fast and deep cooling of circulating electron beams.

D. Low energy hadron cooler rings with circular modes

The equilibrium emittances of a beam under cooling can be limited by Coulomb repulsion when cooling intense
low-energy beams. The above mentioned concept of round beams in a recirculator ring with circular modes matched
with a solenoid of the cooling section prompts a possible way to reduce the space charge effect on the 4D phase space
emittance [12]. The principal optical feature of such a ring is that the drift and cyclotron components of the hadron
particle motion in the solenoid are not mixed by the outside optical channel. Then, the cyclotron component (related
to the hadron beam temperature in the solenoid) will experience a deep cooling, not limited by the space charge. The
drift component (i.e. beam size) can be cooled to an equilibrium limited by the space charge, using the dispersive
cooling.

E. Ionization cooling

A central problem for muon colliders and neutrino factories is the effective ionization cooling of muons. When the
muons are transported inside an extended solenoid, only their cyclotron mode, related to the Larmor rotation, can be
cooled, while the drift emittance, related to positions of the Larmor centers, is preserved. To make the cooling process
comprehensive, a transport scheme with an alternating sign of the magnetic field was proposed. An optimized scheme
based on the use of long solenoids was suggested in Ref. [39]. The central idea of this proposal is a cross-mapping of
the drift and cyclotron modes for the sequential reversed solenoids. Due to the rotation invariance of this symplectic
transformation, it could be done by round lenses (short solenoids) or invariant blocks [6]. The canonical angular
momentum is preserved by this optics, while cooling makes the CAM value systematically decrease.

F. Electron and ion beams for applied use

High quality relativistic electron beams obtained from magnetized sources can be used for the effective generation
of hard radiation, coherent or incoherent. The electron beam in the generation section can be returned (re-injected)
into a solenoid (a strong one), to eliminate beam rotation. Optionally, the beam can be turned to the flat one, to
obtain maximum electron concentration, if necessary. The flat electron and ion beams also might be of interest for
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technological applications. Flat ion beams with low 4D emittance can be obtained by means of electron cooling in
ion rings with circular modes, as described in section IX D. After cooling, a round ion beam can be transformed into
a flat one by using beam adapter in the regime of circulation or after ejection from the ring. Optionally, if the use of
a very cold ion beam would be compatible with the magnetic field, the beam can be re-injected into the solenoid of
the user section, keeping it in a tranquil round state.

X. SUMMARY

In the optics of charged particle beams, circular transverse modes can be introduced; they might be considered as
analogous to the circular modes in the optics of light. These modes provide an adequate basis when the transformations
are rotation-invariant. A group of the invariant transformations is shown to be identical to a group of transformations
preserving the canonical angular momentum; its matrices are described. The rotation-invariant mappings and circular
modes can be parameterized in a way which makes them similar to the Courant-Snyder parameterization in the
conventional uncoupled case. The constructed symplectic basis of circular modes make almost obvious an idea of the
beam adapters, which are optical transformers of the uncoupled to circular modes and back. The adapters can be
implemented on a base of a skew quadrupole block; mapping of a given uncoupled basis onto a given circular basis
requires 6 quadrupoles with variable field gradients. Inside a solenoid, there is a particular choice for the circular
modes, when one of them describes the cyclotron rotation and another - coordinates of the Larmor center. In case of
a beam born at the magnetized cathode, another special choice of the circular modes allows to present a matrix of
the beam second moments (the so-called Σ-matrix) in a diagonal form. A proper downstream adapter can transform
this beam into an uncoupled, or an X−Y -uncorrelated state, in which horizontal and vertical emittances are equal to
the corresponding circular emittances of the beam at the cathode. Such transformations can be used for flat beams
preparation in linear colliders. Beam adapters can also be used for preparation of round beams in the interaction
region of the circular colliders. Requiring only local matching and being insensible to the machine tunes, the beam
adapters can be added without any change to the main part of the lattice. Providing round beams and a rotation-
invariant revolution matrix, such inserts guarantee the angular momentum preservation, which is believed to be crucial
for a significant increase of luminosity. Relativistic electron cooling of heavy particles and ionization cooling of muons
present other fields of research where use of the circular modes can be quite relevant.
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